首页 >> 精选笔记

振动清选能实验报告 石英晶体振荡器实验报告

2024-04-13 精选笔记 5 作者:gynm37GLQ

一、求一份波尔共振实验报告

实验20波尔共振实验

在机械制造和建筑工程等科技领域中受迫振动所导致的共振现象引起工程技术人员极大注意,既有破坏作用,但也有许多实用价值。众多电声器件是运用共振原理设计制作的。此外,在微观科学研究中“共振”也是一种重要研究手段,例如利用核磁共振和顺磁贡研究物质结构等。

本实验中采用波尔共振仪定量测定机械受迫振动的幅频特性和相频特性,并利用频闪方法来测定动态的物理量----相位差。数据处理与误差分析方面内容也较丰富。

一、实验目的

1、研究波尔共振仪中弹性摆轮受迫振动的幅频特性和相频特性。

2、研究不同阻尼力矩对受迫振动的影响,观察共振现象。

3、学习用频闪法测定运动物体的某些量,例相位差。

4、学习系统误差的修正。

二、实验原理

物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为强迫力。如果外力是按简谐振动规律变化,那么稳定状态时的受迫振动也是简谐振动,此时,振幅保持恒定,振幅的大小与强迫力的频率和原振动系统无阻尼时的固有振动频率以及阻尼系数有关。在受迫振动状态下,系统除了受到强迫力的作用外,同时还受到回复力和阻尼力的作用。所以在稳定状态时物体的位移、速度变化与强迫力变化不是同相位的,存在一个相位差。当强迫力频率与系统的固有频率相同时产生共振,此时振幅最大,相位差为90°。

实验采用摆轮在弹性力矩作用下自由摆动,在电磁阻尼力矩作用下作受迫振动来研究受迫振动特性,可直观地显示机械振动中的一些物理现象。

当摆轮受到周期性强迫外力矩的作用,并在有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为)其运动方程为

(1)

式中,为摆轮的转动惯量,为弹性力矩,为强迫力矩的幅值,为强迫力的圆频率。

令,,

则式(1)变为

(2)

当时,式(2)即为阻尼振动方程。

当,即在无阻尼情况时式(2)变为简谐振动方程,即为系统的固有频率。方程(2)的通解为

(3)

由式(3)可见,受迫振动可分成两部分:

第一部分,表示阻尼振动,经过一定时间后衰减消失。

第二部分,说明强迫力矩对摆轮做功,向振动体传送能量,最后达到一个稳定的振动状态。

振幅(4)

它与强迫力矩之间的相位差为

(5)

由式(4)和式(5)可看出,振幅与相位差的数值取决于强迫力矩m、频率、系统的固有频率和阻尼系数四个因素,而与振动起始状态无关。

由极值条件可得出,当强迫力的圆频率时,产生共振,有极大值。若共振时圆频率和振幅分别用、表示,则

(6)

(7)

式(6)、(7)表明,阻尼系数越小,共振时圆频率越接近于系统固有频率,振幅也越大。图1-1和图1-2表示出在不同时受迫振动的幅频特性和相频特性。

三、实验仪器

ZKY-BG型波尔共振仪由振动仪与电器控制箱两部分组成。振动仪部分如图1-3所示:由

β1

β2

β3

β1<β2<β3

ω/ωn

图 1-1

ω/ωn

β1

β2

β1<β2

-π/2

0

φ

图 1-2

铜质圆形摆轮A安装在机架上,弹簧B的一端与摆轮A的轴相联,另一端可固定在机架支柱上,在弹簧弹性力的作用下,摆轮可绕轴自由往复摆动。在摆轮的外围有一卷槽型缺口,其中一个长形凹槽D长出许多。在机架上对准长型缺口处有一个光电门H,它与电气控制箱相联接,用来测量摆轮的振幅(角度值)和摆轮的振动周期。在机架下方有一对带有铁芯的线圈K,摆轮A恰巧嵌在铁芯的空隙,利用电磁感应原理,当线圈中通过直流电流后,摆轮受到一个电磁阻尼力的作用。改变电流的数值即可使阻尼大小相应变化。为使摆轮A作受迫振动。在电动机轴上装有偏心轮,通过连杆机构E带动摆轮A,在电动机轴上装有带刻线的有机玻璃转盘F,它随电机一起转动。由它可以从角度读数盘G读出相位差。调节控制箱上的十圈电机转速调节旋钮,可以精确改变加于电机上的电压,使电机的转速在实验范围(30-45转/分)内连续可调,由于电路中采用特殊稳速装置、电动机采用惯性很小的带有测速发电机的特种电机,所以转速极为稳定。电机的有机玻璃转盘F上装有两个挡光片。在角度读数盘G中央上方900处也有光电门(强迫力矩信号),并与控制箱相连,以测量强迫力矩的周期。

受迫振动时摆轮与外力矩的相位差利用小型闪光灯来测量。闪光灯受摆轮信号光电门控制,每当摆轮上长型凹槽C通过平衡位置时,光电门H接受光,引起闪光。闪光灯放置位置如图(1-3)所示搁置在底座上,切勿拿在手中直接照射刻度盘。在稳定情况时,由闪光灯照射下可以看到有机玻璃指针F好象一直“停在”某一刻度处,这一现象称为频闪现象,所以此数值可方便地直接读出,误差不大于20。

摆轮振幅是利用光电门H测出摆轮读数A处圈上凹型缺口个数,并在液晶显示器上直接显示出此值,精度为20。

波耳共振仪电气控制箱的前面板和后面板分别如图1-4和图1-5所示。

电机转速调节旋钮,系带有刻度的十圈电位器,调节此旋钮时可以精确改变电机转速,即改变强迫力矩的周期。刻度仅供实验时作参考,以便大致确定强迫力矩周期值在多圈电位器上的相应位置。

图 1-3波尔振动仪

1.光电门H;2.长凹槽D;3.短凹槽D;4.铜质摆轮A;5.摇杆M;6.蜗卷弹簧B;7.支承架;8.阻尼线圈K;9.连杆E;10.摇杆调节螺丝;11.光电门I;12.角度盘G;13.有机玻璃转盘F;14.底座;15.弹簧夹持螺钉L;16.闪光灯

图 1-4波耳共振仪前面板示意图

1、液晶显示屏幕 2、方向控制键 3、确认按键 4、复位按键

5、电源开关 6、闪光灯开关 7、强迫力周期调节电位器

图 1-5波耳共振仪后面板示意图

1、电源插座(带保险) 2、闪光灯接口 3、阻尼线圈

4、电机接口 5、振幅输入 6、周期输入 7、通讯接口

可以通过软件控制阻尼线圈内直流电流的大小,达到改变摆轮系统的阻尼系数的目的。选择开关可分4档,“阻尼0”档阻尼电流为零,“阻尼1”档电流约为280mA,“阻尼2”档电流约为300mA,“阻尼3”档电流最大,约为320mA,阻尼电流由恒流源提供,实验时根据不同情况进行选择(可先选择在“2”处,若共振时振幅太小则可改用“1”,切不可放在“0”处),振幅不大于150。

闪光灯开关用来控制闪光与否,当按住闪光按钮、摆轮长缺口通过平衡位置时便产生闪光,由于频闪现象,可从相位差读盘上看到刻度线似乎静止不动的读数(实际有机玻璃F上的刻度线一直在匀速转动),从而读出相位差数值,为使闪光灯管不易损坏,采用按钮开关,仅在测量相位差时才按下按钮。

电机是否转动使用软件控制,在测定阻尼系数和摆轮固有频率与振幅关系时,必须将电机关断。

电气控制箱与闪光灯和波尔共振仪之间通过各种专业电缆相连接。不会产生接线错误之弊病。

四、实验内容

1.测定阻尼系数β

从液显窗口读出摆轮作阻尼振动时的振幅数值θ1、θ2、θ3……θn,利用公式

(8)

求出β值,式中n为阻尼振动的周期次数,θn为第n次振动时的振幅,T为阻尼振动周期的平均值。此值可以测出10个摆轮振动周期值,然而取其平均值。

进行本实验内容时,电机电源必须切断,指针F放在0°位置,θ0通常选取在130-150之间。

2.测定受迫振动的幅度特性和相频特性曲线。

保持阻尼档位不变,选择强迫振荡进行实验,改变电动机的转速,即改变强迫外力矩频率ω。当受迫振动稳定后,读取摆轮的振幅值,并利用闪光灯测定受迫振动位移与强迫力间的相位差(控制在10°左右)

强迫力矩的频率可从摆轮振动周期算出,也可以将周期选为“×10”直接测定强迫力矩的10个周期后算出,在达到稳定状态时,两者数值应相同。前者为4位有效数字,后者为5位有效数字。

在共振点附近由于曲线变化较大,因此测量数据相对密集些,此时电机转速极小变化会引起很大改变。电机转速选钮上的读数(例2.50)是一参考数值,建议在不同ω时都记下此值,以便实验中快速寻找要重新测量时参考。

五、波尔共振仪控制箱的使用方法

1、开机介绍

按下电源开关后,屏幕上出现欢迎界面,其中NO.0000X为控制箱与主机相连的编号。过几秒钟后屏幕上显示如图一“按键说明”字样。符号“t”为向左移动;“u”为向右移动;“p”为向上移动;“q”向下移动。下文中的符号不再重新介绍。

2、自由振荡

在图一状态按确认键,显示图二所示的实验类型,默认选中项为自由振荡,字体反白为选中。(注意做实验前必须先做自由振荡,其目的是测量摆轮的振幅和固有振动周期的关系。)

按键说明

t u→选择项目

pq→改变工作状态

确定→功能项确定

图一yi

实验步骤

自由振荡阻尼振荡强迫振荡

图二

阻尼 0振幅

测量关00回查返回

周期Ⅹ1=秒(摆轮)

图三

阻尼0振幅 134

测量查01↑↓按确定键返回

周期Ⅹ1= 01.442秒(摆轮)

图四

阻尼选择

阻尼1阻尼2阻尼3

图五

10

0

阻尼1振幅

测量关00回查返回

周期Ⅹ=秒(摆轮)

图六

再按确认键显示:如图三

用手转动摆轮160度左右,放开手后按“p”或“q”键,测量状态由“关”变为“开”,控制箱开始记录实验数据,振幅的有效数值范围为:160-50(振幅小于160测量开,小于50测量自动关闭)。测量显示关时,此时数据已保存并发送主机。

查询实验数据,可按“t”或“u”键,选中回查,再按确认键如图四所示,表示第一次记录的振幅为134,对应的周期为1.442秒,然后按“p”或“q”键查看所有记录的数据,该数据为每次测量振幅相对应的周期数值,回查完毕,按确认键,返回到图三状态,若进行多次测量可重复操作,自由振荡完成后,选中返回,按确认键回到前面图二进行其它实验。

3、阻尼振荡

在图二状态下,根据实验要求,按“u”键,选中阻尼振荡,按确认键显示阻尼:如图五。阻尼分三个档次,阻尼1最小,根据自己实验要求选择阻尼档,例如选择阻尼1档,按确认键显示:如图六

用手转动摆轮160度左右,放开手后按“p”或“q”键,测量由“关”变为“开”并记录数据,仪器记录十组数据后,测量自动关闭,此时振幅大小还在变化,但仪器已经停止记数。

阻尼振荡的回查同自由振荡类似,请参照上面操作。若改变阻尼档测量,重复阻尼一的操作步骤即可。

4、强迫振荡

仪器在图二状态下,选中强迫振荡,按确认键显示:如图七(注意:在进行强迫振荡前必须选择阻尼档,否则无法实验。)默认状态选中电机。

=秒(摆轮)

=秒(电机)

阻尼 1振幅

测量关00周期1电机关返回

周期Ⅹ1

图七

10= 14.252秒(摆轮)

0= 14.252秒(电机)

阻尼 1振幅 122

测量开01周期10电机开返回

周期Ⅹ

图八

按“p”或“q”键,电机启动。但不能立即进行实验,因为此时摆轮和电机的周期还不稳定,待稳定后即周期相同时,再开始测量。测量前应该先选中周期,按“p”或“q”键把周期由1(如图七)改为10(如图八),(目的是为了减少误差,若不改周期,测量无法打开)。待摆轮和电机的周期稳定后,再选中测量,按下“p”或“q”键,测量打开并记录数据:如图八。可进行同一阻尼下不同振幅的多次测量,每次实验数据都进行保留。

测量相位时应把闪光灯放在电动机转盘前下方,按下闪光灯按钮,根据频闪现象来测量,仔细观察相位位置。

强迫振荡测量完毕,按“t”或“u”键,选中返回,按确定键,重新回到图二状态。

5、关机

在图二状态下,按住复位按钮保持不动,几秒钟后仪器自动复位,此时所做实验数据全部清除,然后按下电源按钮,结束实验。

六、数据记录和处理

1.阻尼系数的计算。

利用公式(8)对所测数据(表1)按逐差法处理,求出β值。

用公式(9),求出β值。

2.幅频特性和相频特性测量

作幅频特性曲线,并由此求β值。在阻尼系数较小(满足≤)和共振位置附近(),由于,从式(4)和(7)可得出:

当,即,由上式可得

此ω对应于图处两个值ω1,ω2,由此得出:

(此内容一般不做)

将此法与逐差法求得之值作一比较并讨论,本实验重点应放在相频特性曲线测量。

表1阻尼档位

序号

振幅(度)

序号

振幅(度)

θ1

θ6

θ2

θ7

θ3

θ8

θ4

θ9

θ5

θ10

平均值

10T=秒=秒

(9)

表2幅频特性和相频特性测量数据记录表:阻尼开关位置

10T(s)

T(s)

(0)

理论值

θ(0)

测量值

T/T0

误差分析,因为本仪器中采用石英晶体作为计时部件,所以测量周期(圆频率)的误差可以忽略不计,误差组要来自阻尼系数的测定和无阻尼振动时系统的固有振动频率的确定。且后者对实验结果影响较大。

在前面的原理部分中我们认为弹簧的弹性系数k为常数,它与扭转的角度无关。实际上由于制造工艺及材料性能的影响,k值随着角度的改变而略有微小的变化(3%左右),因而造成在不同振幅时系统的固有频率有变化。如果取的平均值,则将在共振点附近使相位差的理论值与实验值相关很大。为此可测出振幅与固有频率的相应数值。在公式中T0采用对应于某个振幅的数值代入,这样可使系统误差明显减小。

振幅与共振频率相对应值可要用如下方法:

将电机电源切断,角度盘指针F放在”0”处,用手将摆轮拨动到较大处(约1400~1500),然后放手,此摆轮作衰减振动,读出每次振幅值相应的摆动周期即可。此法可重复几次即可作出与的对应表。

附:ZKY-BG型波尔共振仪调整方法

波尔共振仪各部分经校正,请勿随意拆装改动,电气控制箱与主机有专门电缆相接,不会混淆,在使用前请务必清楚各开关与旋钮功能。

经过运输或实验后若发现仪器工作不正常可行调整,具体步骤如下:

1、将角度盘指针F放在“0”处。

2、松连杆上锁紧螺母,然后转动连杆E,使摇杆M处于垂直位置,然后再将锁紧螺母固定。

3、此时摆轮上一条长形槽口(用白漆线标志)应基本上与指针对齐,若发现明显偏差,可将摆轮后面三只固定螺丝略松动,用手握住蜗卷弹簧B的内端固定处,另一手即可将摆轮转动,使白漆线对准尖头,然后再将三只螺丝旋紧:一般情况下,只要不改变弹簧B的长度,此项调整极少进行。

4、若弹簧B与摇杆M相连接处的外端夹紧螺钉L放松,此时弹簧B外圈即可任意移动(可缩短、放长)缩短距离不宜少于6cm。在旋紧处端夹拧螺钉时,务必保持弹簧处于垂直面内,否则将明显影响实验结果。

将光电门H中心对准摆轮上白漆线(即长狭缝),并保持摆轮在光电门中间狭缝中自由摆动,此时可选择阻尼开关“1”或“2”处,打开电机,此时摆轮将作受迫振动,待达到稳定状态时,打开闪光灯开关,此时将看到指针F在相位差度盘中有一似乎固定读数,两次读数值在调整良好时差1º以内(在不大于2º时实验即可进行)若发现相差较大,则可调整光电门位置。若相差超过5º以上,必须重复上述步骤重新调整。

由于弹簧制作过程中问题,在相位差测量过程中可能会出现指针F在相位差读数盘上两端重合较好,中间较差,或中间较好、二端较差现象。

[注意事项]

波尔共振仪各部分均是精确装配,不能随意乱动。控制箱功能与面扳上旋钮、按键均较多,务必在弄清其功能后,按规则操作。

波耳共振实验操作注意事项:

1.作自由振荡实验时,必须记下自由振荡实验时的摆轮周期;

2.强迫振荡实验时,调节仪器面板〖强迫力周期〗旋钮,从而改变不同电机转动周期,必须做3~11次,其中必须包括在电机转动周期与自由振荡实验时的自由振荡周期相同的。

3.在作强迫振荡实验时,必须电机与摆轮的周期相同,振幅必须稳定后,方可记录实验数据。

4.学生做完实验后测量数据必须保存。

二、实验报告

实验报告总结(一):一个长学期的电路原理,让我学到了很多东西,从最开始的什么都不懂,到此刻的略懂一二。

在学习知识上头,开始的时候完全是教师讲什么就做什么,感觉速度还是比较快的,跟理论也没什么差距。可是之后就觉得越来越麻烦了。从最开始的误差分析,实验报告写了很多,可是真正掌握的确不多,到最终的回转器,负阻,感觉都是理论没有很好的跟上实践,很多情景下是在实验出现象以后在去想理论。在实验这门课中给我最大的感受就是,必须要先弄清楚原理,在做实验,这样又快又好。

在养成习惯方面,最开始的时候我做实验都是没有什么条理,想到哪里就做到哪里。比如说测量三相电,有很多种情景,有中线,无中线,三角形接线法还是Y形接线法,在这个实验中,如果选择恰当的顺序就能够减少很多接线,做实验应当要有良好的习惯,应当在做实验之前想好这个实验要求什么,有几个步骤,应当怎样安排才最合理,其实这也映射到做事情,不管做什么事情,应当都要想想目的和过程,这样才能高效的完成。电原实验开始的几周上课时间不是很固定,实验报告也累计了很多,第一次感觉有那么多实验报告要写,在交实验报告的前一天很多同学都通宵了的,这说明我们都没有合理的安排好自我的时间,我应当从这件事情中吸取教训,合理安排自我的时间,完成应当完成的学习任务。这学期做的一些实验都需要严谨的态度。在负阻的实验中,我和同组的同学连了两三次才把负阻链接好,又浪费时间,又没有效果,在这个实验中,有很多线,很容易插错,所以要异常仔细。

在最终的综合实验中,我更是受益匪浅。完整的做出了一个红外测量角度的仪器,虽然不是异常准确。我和我组员分工合作,各自完成自我的模块。我负责的是单片机,和数码显示电路。这两块都是比较简单的,可是数码显示异常需要细致,由于我自我是一个粗心的人,所以数码管我检查了很多遍,做了很多无用功。

总结:电路原理实验最终给我留下的是:严谨的学习态度。做什么事情都要认真,争取一次性做好,人生没有太多时间去浪费。

实验报告总结(二):

回顾起此课程设计,感慨颇多,从理论到实践,在这学期的学习中,能够说得是苦多于甜,累,可是能够学到很多很多的东西,不仅仅巩固了以前所学过的知识,也学到了很多在书本上所没有学到过的知识。在实验操作与设计的过程中遇到问题也颇多,但可喜的是最终都得到了解决。

此次课程实验学习给自我最大的感触是,不管什么样的软件,懂的也好不懂的也好,都要动手去用,仅有自我操作了,才会真正明白其中的用处,其次是,在遇到困难的时候,不要总是一个人在那捣鼓,同学间应当互相的帮忙,有时候向别人学习,会比自我一个人在哪儿毫无头绪的摸索更好。

此次设计也让我明白了思路即出路,有什么不懂不明白的地方要及时请教或上网查询,只要认真钻研,动脑思考,动手实践,就没有弄不懂的知识,俗话说的好,读书破万卷下笔如有神,没有学不会仅有不肯学!我坚信,只要下一番功夫就能有梦想的收获!

经过这次实验,让我更加了解到地理信息系统原理与方法的重要性,以及它对我们资源勘查专业发展发挥的重要作用。学习,我觉得结果并不是最重要的,很多结果并不完美,可是学习这个过程是不可少的。当自我把本课程所有的实验做完后,才领悟到教师所说话的含义,要掌握一种新的软件,得随着实践的演练,经过循序渐进的学习,才能更好的掌握它。这次实验,学到的东西很多。

实验报告总结(三):

经过一个学期对《计算机网络实用技术》这门课程的学习,对于我来说它已不陌生。首先对于课程安排,感觉很紧凑,几乎不遗漏任何的知识点。理论总在实验和机试前,这样有利于我们学生理解新知识的灌输,并且把理论运用自如。每理论课后,教师总不忘留出十几分钟的时间给我们思考的空间。其次是对于教学,感觉教师讲课的思路很清晰,运用课件的形式讲课,很有概括性,重点一针见血,易于给我们把握住知识的主次。跟着教师的教学步骤,我们慢慢吃透了课本上的知识,教师偶尔形象及幽默的比喻,易于理解理解,感觉不到课堂的枯燥,实验前,教师总会给足够的时间给我们预习。分成小组的形式,让我们构成合作的团体,实验中不仅仅让我获得知识,更锻炼了我们同学之间的合作。实验中学会了双绞线的制作与测试、IP地址规划与管理、对等网络组网等等。即使操作上,

我们学会了开通博客、;windows2000server的安装等等。实验后的实验报告让我们有了总结回顾的效果。计算机网络是计算机技术和通信技术相互结合、相互渗透而构成的一门新兴学科。21世纪的我们,必须学好科学技术才能站得住脚!!!在实验中,让我们体会到合作的重要性!!!!实验前做好准备,要了解实验目的的要求,要详读实验的步骤,实验过程要谨慎仔细等等。。。

相信以后更认真,努力的学习,必须能够使自我的知识更全面。

1.这个学期我们学习了测试技术这门课程,它是一门综合应用相关课程的知识和资料来解决科研、生产、国防建设乃至人类生活所面临的测试问题的课程。测试技术是测量和实验的技术,涉及到测试方法的分类和选择,传感器的选择、标定、安装及信号获取,信号调理、变换、信号分析和特征识别、诊断等,涉及到测试系统静动态性能、测试动力学方面的研究和自动化程度的提高,涉及到计算机技术基础和基于LabVIEW的虚拟测试技术的运用等。

课程知识的实用性很强,所以实验就显得十分重要,我们做了金属箔式应变片:单臂、半桥、全桥比较,回转机构振动测量及谱分析,悬臂梁一阶固有频率及阻尼系数测试三个实验。刚开始做实验的时候,由于自我的理论知识基础不好,在实验过程遇到了许多的难题,也使我感到理论知识的重要性。可是我并没有气垒,在实验中发现问题,自我看书,独立思考,最终解决问题,从而也就加深我对课本理论知识的理解,到达了双赢的效果。

实验中我学会了单臂单桥、半桥、全桥的性能的验证;用振动测试的方法,识别一小阻尼结构的(悬臂梁)一阶固有频率和阻尼系数;掌握压电加速度传感器的性能与使用方法;了解并掌握机械振动信号测量的基本方法;掌握测试信号的频率域分析方法;还有了解虚拟仪器的使用方法等等。实验过程中培养了我在实践中研究问题,分析问题和解决问题的本事以及培养了良好的工程素质和科学道德,例如团队精神、交流本事、独立思考、测试前沿信息的捕获本事等;提高了自我动手本事,培养理论联系实际的作风,增强创新意识。

三、石英晶体振荡器实验报告***高振动石英晶体振荡器***

新的设备特性使苛刻应用中的频率控制更稳固。我们通常认为在电子系统中,石英晶体振荡器是最易碎的元件之一,这并不奇怪,因为振荡器里的石英晶体谐振器是由一个很大的结晶体组成的,就像一个大的圆空AT-cut晶体被金属夹固定在一个金属壳里。这种结构不能耐受高出50~100g太多的振动强度。这类晶体振荡器非常适合大型台式仪器和类似的设备,但不太适用于对高振动性要求很高的应用领域,如掌上电脑和军需设备。在这些设备中,加速度达到千个甚至万个g。很明显,一般的晶体结构在此类应用中是不合适的。

推动石英晶体和振荡器结构变化的动力来自对电子器件小型化的不断追求。伴随着照相机平版印刷的发展和加工石英晶体的化学工艺的进步,小型化在1970年迈出了关键的一步。这种新的处理工艺来自曾用于硅工业的一些技术,能够精确地磨制出小于1mm尺寸的石英/晶体,并能精确到几微米。在小型化进程中很重要的另一步是将晶体牢牢固定于一个粗糙机架的陶瓷封装技术得到发展。

由此,这种制造与构造工艺成为了石英晶体小型化不成文的标准。

“小型化”与“好处”

幸运的是,石英晶体振荡器的小型化还带来了额外的好处,那就是大大提高了它们冲击与振动的耐受性。因为尺寸小,谐振器质量较低,也因此对谐振器的力也较小。如果使用强安装材料,谐振器就不会因为加速度太大掉下来,它会被牢牢固定在本来的位置上,进一步而言,由于它的小尺寸(短空白大小或短音叉齿)谐振器内的剪力很小,谐振器能抵抗高振动而不被破坏。

小尺寸的另一个附加的好处是,谐振器的最低弯曲型频率状态可达几千赫兹或更高。这种情形至少会带来两个好处。

第一个,由于振动到来之前大约1mm或更长时间会出现振动,可作为类似静电噪声的脉冲处理,在任何指定时段内的振动可大致看做一个固定的加速度,而这个加速度太小,所以不能激活晶体的弯曲模式,

第二,这种弯曲型对频率要求非常高,振动产生的频率通常低于2kHz,所以不会被其所激活。

这在剧烈振动应用环境和工业制造板取代刳刨工具时期非常重要,利用这种现代的制造与构造,石英晶体谐振器不再是娇嫩易碎的东西。如今很多的制造商都能提供耐于g机械振动力的晶体和振荡器。

即便如此,在大多数要求非常严格的应用场合,普通的晶体和振荡器并不合适,如军用和导弹电子。因为这其中的振动能达到几万g。

要满足这些方面的要求,光是谐振器的尺寸缩小并不够,还必须将其按照受剪力最小原则安放。举个例子,对高振动AT-cut晶体而言,第三点装配法可用于将晶体空白的无电端设置为晶体包。用这种方法,晶体抗振动水平能上升至100000g。同样地,用这种晶体结合更先进的结构工艺制造的振荡器也能达到100000g的抗振动性。

设计耐强振动系统时,记住以下几条箴言是非常有用的。

●晶体/振荡器(较小包内发现的)中,小尺寸的比大尺寸的更稳固。

●音叉晶体(通常为10~600kHz)比扩展型晶体(520kHz~2.5MHz)稳固性更好。而AT-cut晶体(8MHz以上)是最稳固的。

●对音叉和扩展型晶体而言,晶体尺寸随频率减小而减小,稳固性随频率增大而增强(对某一指定型晶体)。

●对AT晶体而言,晶体在13~50MHz内是最稳固的,当处在16~32MHz时最佳。

●注意对超过千g级的振动,普通的晶体和振荡器是不合适的,需要采用专为高振动应用环境设计的类型。

●如果已知振动是沿单一方向被采用,合理选择晶体/振荡器的方位能大大提高系统稳固性。

●除了检验数据表上必要的说明,别忘了问清制造商供应高振动设备的历史。

tags:

关于我们

京哲百货网,发布日用百货,服装类测评。

最火推荐

小编推荐

联系我们